Topic Georesources

The Cenozoic central Andes host orogen-parallel belts of magmatic-related ore deposits with contrasting metal associations (Fe, Cu-Au, vs. polymetallic, Sn-Ag). This project will investigate the role of magmas vs. hydrothermal fluids in metal transport and metallogenesis. There a close linkages to projects G3.5 and G4.1.

This project will investigate the primary source rocks for Sn (and Nb-Ta) and rare earth elements (REE) in the pre-Andean basement rocks (granites, pegmatites, metamorphic complexes) and the enrichment/mobilization processes related to chemical (hydrothermal alteration or weathering) and mechanical processes (ductile or brittle deformation in fractures and ductile shear zones). The investigation will focus on selected field occurrences of Palaeozoic granites, pegmatites, and their highly deformed metamorphic equivalents of the pre-Andean crustal basement, especially of the Salta Province.

The spatial architecture of sedimentary facies in a basin exert a fundamental control over the patterns of fluid flow and determines the regional distribution of possible reservoirs and seal units. The distribution of sedimentary facies can be predicted to some extent by sequence stratigraphic theories. These models offer a conceptual framework to extrapolate facies distribution at a regional scale in 2D, ranging from continental to basinal.

The evolution of the inter-mountain Salta basin is related to the evolution of the Central Andes. An intracontinental rift was formed by extensional processes and subsequently filled by up to 5500 m sediments from the Neocomian to the Paleogene intercalated by minor volumes of magmatic rocks. This complex constitutes the Salta group. Paleoenvironmental analysis reveals depositional history controlled by tectonic and climatic changes.